Showing posts with label Image. Show all posts
Showing posts with label Image. Show all posts

Tuesday, November 8, 2022

How to solve Multi-Class Classification Problems in Deep Learning with Tensorflow & Keras?

 

How to solve Multi-Class Classification Problems in Deep Learning with Tensorflow & Keras?

This is the third part of the “How to solve Classification Problems in Keras?” series. If you have not gone over Part A and Part Bplease review them before continuing with this tutorial. The link to all parts is provided below.

In this tutorial, we will focus on how to solve Multi-Class Classification Problems in Deep Learning with Tensorflow & KerasFirst, we will download the MNIST dataset. In multi-class classification problems, we have two options to encode the true labels by using either:

  • integer numbers, or
  • one-hot vector

We will experiment with both encodings to observe the effect of the combinations of various last-layer activation functions and loss functions on a Keras CNN model’s performance. In both experiments, we will discuss the relationship between Activation & Loss functionslabel encodings, and accuracy metrics in detail.

We will understand why sometimes we could get surprising results when using different parameter settings other than the generally recommended ones. As a result, we will gain insight into activation and loss functions and their interactions. In the end, we will summarize the experiment results in a cheat table.

You can access the code at Colab and all the posts of the classification tutorial series at muratkarakaya.netYou can watch all these parts on YouTube in ENGLISH or TURKISH as well.

If you would like to follow up on Deep Learning tutorials, please subscribe to my YouTube Channel or follow my blog on muratkarakaya.net Do not forget to turn on Notifications so that you will be notified when new parts are uploaded.

If you are ready, let’s get started!



Photo by Debby Hudson on Unsplash


tf.data: Build Efficient TensorFlow Input Pipelines for Image Datasets

 tf.data: Build Efficient TensorFlow Input Pipelines for Image Datasets


This tutorial will focus on how to Build Efficient TensorFlow Input Pipelines for Image Datasets in Deep Learning with Tensorflow & Keras.

First, we will review the tf.data library. Then, we will download a sample image and label files. After gathering all the image file paths in the directories, we will merge file names with labels to create the train and test datasets. Using tf.data.Dataset methods, we will learn how to map, prefetch, cache, and batch the datasets correctly so that the data input pipeline will be efficient in terms of time and performance. We will discuss how map, prefetch, cache, and batch functions affect the performance of the tf.data.Dataset input pipeline performance.

Moreover, we will see how to use the TensorBoard add-on “TF Profiler” for monitoring the performance and bottlenecks of the tf.data input pipeline.

You can access this Colab Notebook using the linkYou can access all the tf.data: Tensorflow Data Pipeline tutorials at muratkarakaya.net.

If you would like to learn more about Deep Learning with practical coding examples, please subscribe to my YouTube Channel or follow my blog on muratkarakaya.netDo not forget to turn on Notifications so that you will be notified when new parts are uploaded.

If you are ready, let’s get started!



tf.data: Tensorflow Data Pipelines Tutorial Series

 

tf.data: Tensorflow Data Pipelines Tutorial Series

INDEX PAGE: This is the index page of the “tf.data: Tensorflow Data Pipelines” series.

We will cover all the topics related to tf.data Tensorflow Data Pipeline with sample implementations in Python Tensorflow Keras.

You can access the codesvideos, and posts from the below links.

If you would like to learn more about Deep Learning with practical coding examples, please subscribe to my YouTube Channel or follow my blog on Blogger. Do not forget to turn on notifications so that you will be notified when new parts are uploaded.



Photo by Florian Wächter on Unsplash

Friday, November 4, 2022

Bookmarks to the selected Deep Learning / Machine Learning Resources on the Web

 

Bookmarks to the selected Deep Learning / Machine Learning Resources on the Web

Author: Murat Karakaya
Date created: 19 May 2020
Last modified: 15 Dec 2021
Description: In this post, I share my bookmarks classified according to specific topics in Deep Learning / Machine Learning. Thus, you can save your time searching for similar information on the web. If you have any comments or updates please feel free to share with me!

If you are interested in Deep Learning / Machine learning, you can find hundreds of video tutorials with Python code samples in Jupyter notebooks at the following links:



Photo by Bernd Klutsch on Unsplash

Classification in Deep Learning with TensorFlow & Keras Tutorial Series

 

Classification in Deep Learning with TensorFlow & Keras Tutorial Series

This is the index page of the “How to solve Classification Problems in Deep Learning with TensorFlow & Keras?” tutorial series.

We will cover all the topics related to solving Classification Problems with sample implementations in Python TensorFlow Keras.

You can access the codesvideos, and posts from the below links.

If you would like to follow up on Deep Learning tutorials, please subscribe to my YouTube Channel or follow my blog on muratkarakaya.net.  Do not forget to turn on notifications so that you will be notified when new parts are uploaded.

Last updated: 26/07/2022



Photo by Cristina Gottardi on Unsplash