Showing posts with label Büyük Dil Modelleri. Show all posts
Showing posts with label Büyük Dil Modelleri. Show all posts

Saturday, May 17, 2025

Açık Kaynak Büyük Dil Modellerinin Stratejik Gücü: Yerel Olarak Model Çalıştıran Askeri ve Sivil Kurumlar İçin Yetenekler, Kullanım Alanları ve Gelecek Perspektifi

Açık Kaynak LLM’lerin Stratejik Gücü: Yerel Model Kullanımıyla Askeri ve Sivil Kurumlar İçin Yetenekler, Kullanım Alanları ve Gelecek Perspektifi

🧭 Neden Açık Kaynak?

Açık kaynak büyük dil modelleri (LLM’ler), mimarileri ve ağırlıkları kamuya açık olan yapay zeka sistemleridir. Bu sayede geliştirme, ince ayar (fine-tuning) ve dağıtım işlemleri serbestçe yapılabilir. Açık kaynak yazılım hareketinden ilham alarak ortaya çıkan bu modeller, ortak bilgi birikimi, şeffaflık ve iş birliğine dayalı inovasyonun avantajlarını taşımaktadır.

Yazılım geliştirme ilk başladığında, geliştiriciler çalışmalarından para kazanmak istiyordu. Zamanla kapalı kaynak sistemler ortaya çıktı ama bu sistemler bazı riskleri de beraberinde getirdi. Örneğin, kapalı kaynaklı yazılımlarda arka kapılar veya güvenlik açıkları kamu denetimi olmadan istismar edilebilir. Açık kaynak yazılımlar –ve artık açık LLM’ler– bu riski ortadan kaldırır. Herkes kodu inceleyebilir, hataları tespit edebilir ve düzeltmelere katkı sağlayabilir. Böylece daha sağlıklı ve güvenli bir ekosistem oluşur.

LLM’ler de bu durumdan farklı değil. DeepSeek, Meta veya Google Gemma gibi açık modeller sayesinde araştırmacılar mimari ve eğitim tekniklerini öğrenebilir. Bu kolektif ilerleme herkesin yararınadır. Örneğin, DeepSeek’in akıl yürütmeyi geliştirmeye yönelik pekiştirmeli öğrenme yaklaşımı açık kaynak topluluğunda hızla benimsendi.

Murat Karakaya Akademi’de sıkça gelen bir soru:
🗣️ “Açık kaynak LLM’ler, veri gizliliği ve yerel AI kullanımı öncelikli alanlarda –örneğin milli savunma veya kamu kurumlarında– pratik olarak kullanılabilir mi?”

Bu yazıda açık kaynak LLM’lerin tam potansiyeli, askeri ve sivil sektörlerdeki uygulamaları ve çeşitli kullanım senaryoları için donanım ihtiyaçları ele alınmaktadır.

Eğer isterseniz bu içeriği Murat Karaka Akademi Youtube knalımdan seyredebilirsiniz:


✅ Veri Gizliliğine Duyarlı Kurumlar İçin Açık Kaynak LLM’lerin Avantajları

💰 Maliyet Etkinliği ve Erişilebilirlik

Açık kaynak LLM’ler genellikle ücretsiz veya düşük maliyetlidir. Bu sayede sivil ve askeri kurumlar, büyük bütçelere ihtiyaç duymadan yapay zeka kapasitesi oluşturabilir. Bu modeller kurum içi sistemlere indirilebilir ve internete bağlı olmadan (ör. intranet üzerinden) çalıştırılabilir.

OpenAI ya da Gemini gibi dış servis sağlayıcılarına erişimi olmayan ya da veri gizliliği nedeniyle güvenmeyen kurumlar bu modelleri yerel olarak kullanabilir. Örneğin, Türk Silahlı Kuvvetleri, milli güvenlik ajansları veya savunma sanayii firmaları bu modelleri yerel altyapılarında güvenli şekilde dağıtabilir.

🔍 Özelleştirilebilirlik ve Şeffaflık

Kapalı sistemlerde model mimarisi veya eğitim süreci hakkında bilgi edinmek mümkün değildir. Açık kaynak modeller ise tam belgeleri, eğitim veri referansları ve uygulama ayrıntıları ile birlikte gelir. Kurumlar, bu modelleri kendi özel veri kümeleriyle eğitebilir –verileri üçüncü taraf bulutlara yüklemeye gerek kalmadan.

Linux dağıtımlarında olduğu gibi, LLM’ler de belirli alanlara özel şekilde özelleştirilebilir:

  • Hukuk danışmanlığı (ör. hukuk büroları)

  • Otomotiv güvenliği (ör. TOGG)

  • Enerji altyapısı takibi (ör. internet bağlantısı olmadan)

🛡️ Yerel Dağıtım ve Veri Güvenliği

LLM’lerin yerel olarak çalıştırılması, gizli veya hassas verilerin tam kontrolünü sağlar. Ulusal savunma, istihbarat veya kolluk kuvvetleri gibi alanlarda internete çıkış sadece tercih değil, zorunluluktur. Açık modeller, ağırlıkların indirilmesinden çıkarım (inference) ayarlarına kadar tam yığın dağıtım imkânı sunar.

NATO gibi global kurumlar bile internetsiz (air-gapped) sistemler kullanmaktadır. Açık LLM’ler, bu tür ortamlara en güncel yapay zekayı güvenle entegre etme fırsatı sunar.

🌐 Topluluk Tabanlı İnovasyon

Dünyanın dört bir yanındaki geliştiriciler Hugging Face ve GitHub gibi platformlarda açık modelleri geliştirmeye katkı sağlıyor. Hata düzeltmelerinden eklenti geliştirmeye kadar, ekosistem canlı ve üretken. Örneğin Open WebUI, LM Studio veya Ollama gibi topluluk tarafından geliştirilen arayüzler yerel modellerle kullanıcı dostu etkileşim sunar.

🔗 Tedarik Zinciri Bağımsızlığı

Kapalı kaynak API’lere güvenmek, fiyatlandırma, lisans ve hizmet devamlılığı gibi dış etkenlere bağımlılığı artırır. Sağlayıcı değiştirmek zaman ve maliyet ister. Açık modeller bu bağımlılığı ortadan kaldırır ve uzun vadeli sürdürülebilirlik sunar.

🚀 Hızlı Uyarlama

Açık kaynak LLM’lerdeki araştırmalar ve gelişmeler topluluk içinde hızla yayılır. DeepSeek’in çoklu tekniklerle yaptığı ince ayar çalışmaları, LLaMA 3 ve Qwen gibi yeni modelleri etkilemiştir. Yayınlanan makaleler ve paylaşılan kodlar sayesinde, yüksek lisans öğrencileri bile ileri seviye AI tekniklerini deneyebilir.

🛠️ Alan Odaklı İnce Ayar (Fine-Tuning)

Açık LLM’ler savunma veya kamuya yönelik özel alanlarda şu şekilde uyarlanabilir:

  • Stratejik metin analizi

  • İstihbarat raporu özetleme

  • Hukuki veya idari belge işleme

  • Kurum içi sistemler için doğal dil arayüzleri

Bu ince ayar işlemleri tamamen kurum içi sistemlerde gerçekleştirilebilir. Belgeleri dışa yüklemeye gerek yoktur. Hukuk ofisleri, askeri birimler veya AR-GE departmanları, modelleri kendi iş akışlarına göre özelleştirebilir.

🎓 Eğitim ve Simülasyon

Askeri eğitim simülasyonlarında ve kamu hizmeti eğitimlerinde, durumsal farkındalık ve dil becerileri kazandırmak için kullanılabilir.

🌍 Çok Dilli Yetenekler

Farklı dilleri desteklemeleri sayesinde çok kültürlü topluluklara hizmet etmek ve uluslararası iş birliklerine katkı sağlamak mümkündür. Qwen, Gemma ve DeepSeek gibi modeller artık Türkçe dahil 120’den fazla dili desteklemektedir.


⚖️ Açık vs Kapalı Modeller

ArtificialAnalysis.ai sitesinde yayımlanan karşılaştırmaya göre:

  • Açık modellerin performansı, kapalı modellere yaklaşmaktadır.

  • Özelleştirme ve güvenli dağıtımda açık modeller öne çıkmaktadır.

  • Veri kontrolü ve entegrasyon esnekliği isteyen kurumlar için idealdir.


🔍 Örnek Kullanım: Açık Kaynak ile İstihbarat ve Belge Analizi

Görev: “Yunanistan'ın hangi ülkelerden askeri teçhizat aldığını, ürün ve maliyet detaylarıyla listele.”

Açık kaynaklı bir model, belge ve görsel analiz araçlarıyla entegre şekilde:

  • Alım verilerini çıkarabilir

  • Bilgiyi özetleyebilir

  • Eğilim ve içgörü oluşturabilir

Aynı yöntem, hukuk uyumu izleme veya bütçe analizi gibi sivil alanlarda da geçerlidir.



🖼️ Görsel ve İmge Tabanlı Zeka

LLM’lerin görüntü tanıma ile birleşmesi sayesinde:

  • Uydu görüntüsü analizi

  • Altyapı takibi

  • Ekipman sınıflandırması yapılabilir.

Bu kullanım alanları hem askeri keşif hem de şehir planlama veya afet yönetimi gibi sivil alanlara hizmet eder.


🔐 Riskler ve Güvenlik Önlemleri

⚠️ Halüsinasyon ve Bilgi Kirliliği

Yanlış veya uydurma çıktılar üretebilir.
🛡️ Çözüm: Zeminleme (grounding) ve doğrulama katmanları eklenmeli.

⚠️ Kötüye Kullanım ve Siber Güvenlik

Gereken önlemler alınmazsa kötüye kullanılabilir.
🛡️ Çözüm: İzole çalışma ortamları ve sıkı erişim politikaları uygulanmalı.


📊 Model Büyüklüğüne Göre Donanım Gereksinimleri

Model BüyüklüğüGerekli VRAMTipik GPU’larNotlar
1.5B4–6 GBGiriş seviyesiFP16/BF16 ile çalışır
7B/8B8–12 GBRTX 3080+Kuantizasyon VRAM’i azaltır
13B/14B12–16 GBÜst düzey GPU
32B16–24 GBRTX 4090, A6000
70B32–48 GBÇoklu GPU veya profesyonel sistemler

👉 Kullanım Önerisi:

  • 7B altındaki modeller, 8–12 GB VRAM’li GPU’larda bireysel geliştiriciler tarafından kullanılabilir.

  • 13B/14B modeller, orta düzey yerel kurumlar için RTX 4090 ile uygundur.

  • Sürekli iş yükü veya hassas görevler için 32B+ modeller önerilir.


🖥️ GPU Fiyat ve Kapasite (USD Tahmini)

GPU ModeliFiyatVRAMDesteklenen ModellerNotlar
RTX 3080$480–70010GBLLaMA 2 7B, Mistral 7BUygun maliyetli
RTX 4090$1,300–1,80024GBLLaMA 2 70B (quantized)Yaygın ve güçlü
A6000$3,000–4,00048GBClaude 3 Opus (quant.), LLaMA 3Kurumsal seviye
H100$16,500–26,00080GBGPT-4, Claude 3 OpusVeri merkezi için

👉 Kullanım Önerisi:

  • Pilot çalışmalar için RTX 3080/3090 yeterli olabilir.

  • Gerçek zamanlı performans isteyen kamu kurumları RTX 4090 veya A6000 tercih etmeli.

  • Yüksek kapasiteli kamu sistemleri için H100 idealdir.


📈 Kullanıcı Sayısına Göre GPU İhtiyacı

KullanıcıGPU SayısıToken Üretim HızıNot
1–51 H1002–5 token/snKişisel/küçük ekip
20–254 H10010–15 token/snOrta ölçekli kurum
75–10016–20 H10025–30 token/snBüyük kurum
300–40064–80 H10070–100 token/snUlusal düzey kullanım

Verimlilik Artırıcı Faktörler:

  • Kuantizasyon eşzamanlı kullanıcı sayısını artırır.

  • Uzun bağlam pencereleri ek hafıza gerektirir.

  • Toplu (batch) ve spekülatif çıkarım, verimliliği büyük ölçüde artırır.


🧭 Kurumlar İçin Aşamalı Geçiş Yol Haritası

1️⃣ İhtiyaç Analizi ve Hedef Belirleme (1-2 ay)
2️⃣ Minimum Altyapı (2-3 ay) – 2–4 GPU ile 20–30 kullanıcı testi
3️⃣ Operasyonel İyileştirme (3-4 ay) – Kuantizasyon ve kullanıcı geri bildirimi
4️⃣ Kontrollü Ölçekleme (4-6 ay) – 70B+ model testi ve kullanıcı sayısını artırma
5️⃣ Tam Dağıtım (6+ ay) – MLOps otomasyonu ve tüm birimlere genişletme

Yararları:

  • Maliyet-etkin ölçeklenme

  • Kurumsal bilgi transferi

  • Kullanıcı ihtiyaçlarına sürekli uyum

  • Yüksek benimseme oranı ve direnç


🌟 Gelecek Vizyonu ve Sonuç

Açık kaynak LLM’ler, robotik, siber güvenlik ve alan bazlı iş akışlarıyla entegre edildiğinde:

  • Daha akıllı otonom sistemler

  • Sivil teknoloji egemenliği

  • Yerel yapay zeka ile daha düşük risk sağlar.

🎯 Eylem Çağrısı: Tüm kamu ve özel kurumlar açık kaynak LLM’leri incelemeye, pilotlar oluşturmaya ve ortak geliştirme süreçlerine katılmaya davetlidir.

📺 YouTube Kanalı: Murat Karakaya Akademi