Google Gemma 3: Türkçe Destekli Açık Kaynak Yapay Zeka Devrimi
Merhabalar arkadaşlar, hoş geldiniz. Bugün sizlerle Google DeepMind tarafından yayınlanan ve yapay zeka dünyasında, özellikle açık kaynak modeller tarafında büyük ses getiren Gemma 3 modelini derinlemesine inceleyeceğiz.
Biliyorsunuz, açık kaynak dünyası hızla gelişiyor ancak Türkçe dil desteği konusunda her zaman bazı kısıtlarla karşılaşıyorduk. Gemma 3, 128.000 token bağlam penceresi (context window) ve resmi Türkçe desteği ile oyunun kurallarını değiştiriyor olabilir. Peki, 4 milyar parametreli "küçük" bir model, 27 milyarlık abileriyle veya ChatGPT gibi devlerle yarışabilir mi? Gelin, teknik detaylara ve performans testlerine birlikte bakalım.
Bu konuyu uygulamalı olarak görmek, kodları adım adım takip etmek ve modelin canlı performans testlerini izlemek için videoyu izlemenizi şiddetle öneririm:
Bu Eğitimde Neler Öğreneceksiniz?
- Gemma 3'ün teknik mimarisi ve getirdiği yenilikler (Multimodal yapı).
- Modelin Türkçe dil performansı, mantık ve muhakeme yetenekleri.
- 4B ve 27B modellerin donanım gereksinimleri (VRAM tüketimi).
- Açık kaynak modellerin yerel bilgisayarda çalıştırılması.
- RAG ve Agent (İş Gören) sistemlerinde kullanım potansiyeli.
Gemma 3 Nedir ve Neden Önemli?
Google'ın "Gemma" serisi, aslında kapalı kaynak olan Gemini modellerinin teknolojisiyle üretilmiş, ağırlıkları (weights) halka açılmış versiyonlarıdır. Gemma 3 ile birlikte Google, sadece ağırlıkları değil, teknik raporu da yayınlayarak şeffaflık konusunda önemli bir adım attı.
Bu modelin en çarpıcı özelliği Multimodal (Çok Modlu) olmasıdır. Yani modele hem metin hem de görsel verip, metin çıktısı alabilirsiniz. Ayrıca daha önceki versiyonlarda 8K olan bağlam penceresi, Gemma 3 ile 128K seviyesine çıkarılmış. Bu, yaklaşık olarak yüzlerce sayfalık bir kitabı tek seferde modele verip üzerinde konuşabileceğiniz anlamına gelir.
Türkçe Performansı ve Tokenizer Devrimi
Videodaki testlerimizde gördük ki, Gemma 3 özellikle Türkçe konusunda çok başarılı. Bunun arkasındaki temel sebep, Google'ın Tokenizer yapısını değiştirmesidir. Eski modeller genellikle İngilizce ağırlıklı eğitildiği için Türkçe kelimeleri çok fazla parçaya bölüyor ve anlam bütünlüğünü kaybedebiliyordu. Gemma 3, 140 dili kapsayan özel eğitim setiyle Türkçeyi "anadil" seviyesine yakın bir akıcılıkta işliyor.
Mantık ve Muhakeme Testleri
4 milyar parametreli (4B) versiyonu 4-bit quantize edilmiş haliyle test ettik. Şaşırtıcı sonuçlar aldık:
- Oğuz Atay Özeti: "Tutunamayanlar" kitabından ağır bir paragrafı başarıyla ve felsefi derinliği koruyarak özetledi.
- Mantık Soruları: Klasik "kuruyan gömlek" veya "otobüs durağı" sorularında, kendisinden çok daha büyük modellerin (hatta bazen GPT-4 seviyesindeki modellerin) düştüğü tuzaklara düşmedi. Kendi hatasını fark edip düzeltebilen bir yapı sergiledi.
Kodlama ve Teknik Kurulum
Gemma 3'ü yerel bilgisayarınızda çalıştırmak için Unsloth, Hugging Face Transformers veya Ollama kullanabilirsiniz. 4B modeli çalıştırmak için yaklaşık 7-8 GB VRAM (veya RAM) yeterli oluyor. Bu da ortalama bir oyun bilgisayarında veya Apple Silicon işlemcili bir Mac'te rahatlıkla çalışabileceği anlamına gelir.
Aşağıda, modeli Python ortamında `unsloth` kütüphanesi ile nasıl yükleyebileceğinize dair basit bir örnek paylaşıyorum:
from unsloth import FastLanguageModel
import torch
# 4-bit quantization ile modeli yükle (Daha az bellek kullanımı için)
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/gemma-3-4b-it-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
# Inference (Tahmin) Moduna Al
FastLanguageModel.for_inference(model)
# Prompt Formatı
messages = [
{"role": "user", "content": "Bana Python'da bir QuickSort algoritması yazabilir misin?"},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True,
return_tensors = "pt",
).to("cuda")
# Çıktı Üret
outputs = model.generate(input_ids = inputs, max_new_tokens = 1024, use_cache = True)
print(tokenizer.batch_decode(outputs)[0])
Bu kod bloğu, Unsloth kütüphanesinin optimize edilmiş yapısını kullanarak modeli çok daha hızlı ve az bellek tüketerek çalıştırmanızı sağlar.
Sıkça Sorulan Sorular (SSS)
1. Gemma 3 tamamen ücretsiz mi?
Evet, Gemma 3 açık ağırlıklı (open weights) bir modeldir. Ticari kullanım şartlarına (Google'ın lisansına) uymak kaydıyla projelerinizde ücretsiz kullanabilirsiniz.
2. ChatGPT yerine kullanılabilir mi?
Günlük sohbetler için ChatGPT daha geniş bir genel kültüre sahip olabilir. Ancak veri gizliliğinin önemli olduğu şirket içi projelerde, RAG (Retrieval Augmented Generation) sistemlerinde ve yerel "Agent" (İş Gören) uygulamalarında Gemma 3 harika bir alternatiftir.
3. Hangi donanıma ihtiyacım var?
4 milyar parametreli (4B) modeli çalıştırmak için 8GB RAM/VRAM yeterlidir. 27 milyar parametreli (27B) versiyonu verimli çalıştırmak için ise RTX 3090 veya 4090 gibi en az 24GB VRAM'e sahip kartlar önerilir.
Sonuç
Özetle, Google Gemma 3, özellikle Türkçe doğal dil işleme projeleri geliştirmek isteyen mühendisler, öğrenciler ve araştırmacılar için muazzam bir fırsat. Açık kaynak olması, yerelde çalışabilmesi ve mantıksal çıkarım yeteneğinin boyutuna göre çok yüksek olması onu öne çıkarıyor. Projelerinizde API maliyetlerinden kurtulmak ve verinizi dışarı çıkarmadan işlemek istiyorsanız, Gemma 3'ü mutlaka test etmelisiniz.
Yapay zeka, Büyük Dil Modelleri (LLM) ve yazılım dünyasındaki en güncel gelişmeleri teknik derinlikle öğrenmek için Murat Karakaya Akademi YouTube kanalına abone olun.
Kanalı Ziyaret Et & Abone Ol 🚀
#MuratKarakayaAkademi #Gemma3 #YapayZeka #LLM #DeepLearning #Python



